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Molecular traffic control for a cracking reaction
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Abstract

We investigate the conditions for reactivity enhancement of a catalytic cracking process in porous crystalline solids using the concept of
molecular traffic control (MTC). Using dynamic Monte Carlo simulations we obtain a quantitative description of the MTC effect for a bimodal
network of intersecting size-selective channels over a wide range of grain parameters, diffusivities and reaction constants, and external operating
conditions. The results are compared with those obtained on a similar network but with only one type of channels, called the reference system. We
find significant reactivity enhancement in the MTC system with respect to the reference system. This effect is observed to increase with the grain
size, and also with longer segments between lattice intersections. We find that in certain regions of the microscopic reaction rate the reactivity
enhancement is up to 68%.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Zeolites are used for a variety of industrial applications, e.g.,
isomerization and cracking of hydrocarbons in the petroleum
industry [1,2]. In a number of zeolites diffusive transport takes
place in quasi one-dimensional channels where the guest mole-
cules may block the movement of each other [3]. Due to mutual
blockage of reactant and product molecules under such single
file conditions [4], the effective reactivity of a catalytic process
(which is determined by the residence time of molecules inside
the zeolite) may be considerably reduced as compared to the
reactivity in the absence of single file behaviour. This results
in a very low output of product molecules from the catalytic
grain. In order to overcome this problem, the concept of molec-
ular traffic control (MTC) was suggested [5,6]. In MTC one has
spatially separated pathways for the reactant and product mole-
cules. This avoids the mutual suppression of self diffusion in
the grains and thus reduces the residence time. The concept of
MTC has remained controversial for a long time.
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To test whether the MTC effect leads to enhancement
of grain reactivity, several authors have carried out dynamic
Monte Carlo simulations (DMCS) of a stochastic model sys-
tem with a two-dimensional network of perpendicular sets of
bimodal intersecting pore channels and catalytic sites located at
the intersections of the pores [7–12], referred to as the NBK
model. The authors of these papers studied numerically the
occurrence of the MTC effect by comparing the outflow of reac-
tion products in the MTC system with a reference system (REF)
which is identical to the MTC system but with only one type of
channels carrying both the reactant and product particles.

An MTC effect in the NBK topology was found, and turned
out to be favoured by a small number of channels and long
channel segments between intersections, which by themselves
lead to a very low absolute outflow compared to a similar sys-
tem with shorter channel segments. For reasonable reactivities
and moderate channel segment lengths, the MTC effect is in-
versely proportional to the grain diameter [11] and vanishes
already for rather small lattices. Extension of the topology to
three dimensions leads to similar results, suggesting that an
appreciable MTC effect can occur, but only in tiny nanometer-
sized crystallites [12]. With a view on exploiting the MTC
effect in commercially used zeolite grains this observation ne-

http://www.elsevier.com/locate/jcat
mailto:harish@igcar.gov.in
mailto:harish_juelich@yahoo.co.in
http://dx.doi.org/10.1016/j.jcat.2007.10.009


192 R. Harish et al. / Journal of Catalysis 253 (2008) 191–199
Fig. 1. REF system (a) and MTC system with BrS topology (b). In (a) all the channels carry both A- and B-particles. In (b), the channels which carry only the
product B-particles (β-channels) are shown in black and the channels which carry both A- and B-particles (α-channels) are shown in gray. Intersections where the
catalytic reactions are possible are marked with a solid square. The end sites of the channels are the reservoir sites. The lattice is N × N (N = 5) with two sites
between intersections (L = 2).
cessitates searching for alternative MTC topologies which in
principle would work for grains of any size. To this end, a
new two-dimensional bimodal channel topology was proposed,
where the channels are alternately placed in both the direc-
tions [13], see Fig. 1. This channel topology is subsequently
referred to as BrS topology.

A series of DMCS for this topology has shown that indeed
the grain reactivity is enhanced for larger grains at some sys-
tem parameters. This will be useful in applications where large
porous solids having lattice networks identical to or similar to
the BrS topology are used. Recently the zeolite material TNU-9
has been characterized [14]. The structure consists of paral-
lel layers (y–z plane), with two types of channels of different
sizes (say α and β) alternately placed along the y-direction,
α-channels placed along the z-direction and the parallel layers
connected by the β-channels (see [14] for details). The two-
dimensional BrS topology along both the directions resembles
the TNU-9 structure along the y-direction.

All the theoretical studies of MTC in zeolites so far con-
sider the isomerization reaction A → B , which is a conversion
of a reactant molecule A to a product molecule B , under single
file conditions. In these studies it is assumed that A- and B-
molecules have the same diffusion rates. Two cases are studied,
shape selectivity and size selectivity. In the case of shape se-
lectivity, the reactant and product molecules diffuse in different
channels (α- and β-channels, respectively defined in Fig. 1).
In the case of size selectivity, the reactant molecules diffuse
only in the α-channels, whereas the product molecules diffuse
in both α- and β-channels. The behaviour of the stationary out-
flow of B-molecules is qualitatively similar in both the cases.
However, if the product molecules are smaller in size as com-
pared to the reactant molecules, the more realistic case would
be the size selectivity case, as both reactant and product mole-
cules can diffuse through the α-channels. We note that in all
studies of the NBK-model only shape-selectivity was consid-
ered.

Our aim is to study a cracking reaction in the BrS topology,
with a combination of single-file conditions and size-selectivity
in a bimodal channel system. Moreover, we wish to investigate
the strength of the MTC effect for different diffusion rates of
reactant and product molecules. In the following, we report sim-
ulation results of a cracking reaction in the BrS topology, which
is an important reaction from the point of application, where we
assume that an A-molecule gets cracked to two B-molecules.

The paper is organized as follows. In Section 2 we describe
the lattice system and the model used for simulation. In Sec-
tion 3 we present our results. First, we describe the dynamic
Monte Carlo algorithm used (Section 3.1). Then, we present
some analytical results obtained for the molecular outflow for
a lattice with one intersection (Section 3.2). In Section 3.3
we present the results of Monte Carlo (MC) simulations; for
equal diffusion rate for both reactant and product particles (Sec-
tion 3.3.1), and when the diffusion rate of the product molecules
is varied (Section 3.3.2). Finally we present a summary in Sec-
tion 4.

2. Model

We consider a cracking reaction A → 2B in a catalyti-
cally active porous grain, surrounded by a gas phase to which
A-molecules are supplied at constant rate and from which
B-molecules are constantly extracted. By studying a reaction–
diffusion process on a molecular scale inside a catalytic grain
we encounter local concentration gradients inside the grain
which are maintained by the constant supply of reactants and
removal of reaction products and which thus drive the system
into a strongly nonequilibrium steady state.

There is no quantitative theory to estimate the outflow or the
density profiles of the reactant and product molecules inside
the grain under such circumstances and hence it is necessary to
take recourse to numerical methods. Being faced with a station-
ary process far from thermal equilibrium excludes a description
both by molecular dynamics simulation and by usual equilib-
rium Monte Carlo techniques. Instead we adapt earlier work
to our present problem and choose an approach amenable to
numerical treatment by means of dynamical Monte Carlo sim-
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ulation (DMCS) [10–13,15]. A detailed review of modeling of
diffusion in zeolites is given in [16].

The main quantity of interest is the stationary molecular flow
of B-molecules into the gas phase as this quantity measures the
effective reactivity of a catalytic grain. In the lattice gas descrip-
tion adopted in the Monte Carlo model described below mole-
cules of type A or B are described by particles without internal
structure. Correspondingly the molecular flow is proportional
to the output current of B-particles. This is the (stationary) av-
erage number of B-particles that leave the grain per time unit.
Since we are interested in comparing the outflow of two dif-
ferent models, the MTC system and the reference system, the
actual time unit is immaterial as it cancels in the efficiency ra-
tio defined below. When referring to the model in the technical
part of the paper we shall use the expression current rather than
molecular flow and particle rather than molecule.

For the MTC-grain we use BrS topological model with a
quadratic array of N × N channels which is a measure of the
grain size (Fig. 1b). We assume the lattice to be embedded in a
reservoir of A- and B-particles which represents the gas phase
surrounding the grain. The sites next to the reservoir where
molecules from the gas phase can enter and leave the grain are
called the boundary sites. Each channel has L sites between the
intersection points or between an intersection and the reservoir.

A- and B-particles diffuse inside the channels or between
the boundary sites and the reservoir by attempting to hop to
the adjacent site with rate DA (DB ). Whether a hopping at-
tempt is successful or not depends on whether the target site is
allowed to be filled or not. The binary channel structure is as-
sumed to be size-selective with the simplifying assumption on
the microscopic pore structure that A-particles are allowed to
enter only the α-channels, whereas B-particles are allowed to
enter both the α- and β-channels. More precisely, we assume
that the entrances of the β-channels are small enough so that
A-particles do not enter them, yet the interior of the β-channels
is large enough to allow two B-particles to be occupied by a lat-
tice site. Generally hard-core repulsion is assumed between A

and A and between A- and B-particles, such that if a lattice site
is occupied by one A-particle it may not be occupied by another
particle of any type (exclusion rule). On the other hand, since
two B-particles are created at the expense of one A-particle,
we relax the exclusion rule for B-particles and assume that any
lattice site in the α-channel is either empty or allowed to be
occupied by one A-particle, or at most two B-particles. In a β-
channel, a lattice site is empty or is allowed to be occupied by
one B-particle or (at most) two B-particles. The cracking reac-
tion is allowed to take place only at the intersections accessible
to the A-particles with rate c, where an A-particle is annihilated
and two B-particles are created.

At the boundary sites, A- and B-particles are injected into
the lattice with rates DAρA and DBρB , respectively. Since the
reaction product B is constantly removed from the gas phase
we assume that the reservoir consists entirely of A-particles
and therefore set ρB = 0. Because of size selectivity it is also
assumed that the reservoir sites at the end of the β-channels
cannot be occupied by A-particles. Therefore there is no parti-
cle injection at the boundaries of β-channels. At the boundaries
of α-channels A- and B-particles jump into the reservoir with
rates DA(1 − ρA) and DB(1 − ρA), respectively. At the bound-
aries of β-channels B-particles jump with rate DB into the
reservoir. Notice that jump attempts into the reservoir with the
given rates are always successful and amount to annihilation
of particles from the boundary sites with the respective jump
rates. This boundary-reservoir dynamics which describes the
exchange of particles between the grain and the surrounding gas
phase is equivalent to representing the gas phase by a reservoir
site which is occupied at all times by an A-particle with prob-
ability ρA and then letting particles attempt to jump between
reservoir site and boundary site with rates DA,B as in the bulk.

The results for the MTC for the BrS topology are com-
pared with a reference (REF) system, where all the channels
are α-channels, i.e., all the channels allow diffusion of both A-
and B-particles in them and have exchange with the reservoir
as discussed above for α-channels. Catalytic cracking occurs at
all intersection sites.

To be precise we remark that in the mathematical model
described above all transition attempts are assumed to occur
in continuous time. These are Poisson processes which take
place after an exponentially distributed random time, the in-
verse mean of which is the attempt rate. An exponentially dis-
tributed random time is a standard assumption expected from
the theory of thermally activated processes.

3. Monte Carlo results

For numerical simulation of the model described above we
adopt the dynamic Monte Carlo algorithm with random sequen-
tial update for the calculation of the current of B-particles [16].

First we describe in some detail the algorithm (Section 3.1).
Then the simulation results obtained for a lattice with one in-
tersection are compared with exact analytical results and the
comparison is found to be very good (Section 3.2). The numer-
ical results for larger lattices are reported in Section 3.3. We are
mainly interested in the stationary current of B-particles from
the lattice per unit time, i.e., the number of B-particles that are
absorbed by the reservoir from the boundary sites per unit time.

3.1. Algorithm

Since ρB = 0, B-particles that hop to the reservoir site are
removed from it immediately. For simulating hopping and re-
action events of the process, we first choose a bond connecting
two adjacent lattice sites. Each bond is chosen randomly with
equal probability. As a technical point we remind the interested
reader that the random sequential update discretizes time into
small units of approximately the order of the inverse number
of lattice sites and thus replaces the exponential distribution of
random times underlying the definition of the continuous-time
process introduced above by a geometric distribution. Thus
an exponential sojourn probability s(t) = exp(−xt) for some
process with transition rate x is simulated by a sojourn proba-
bility s̃(x) ≈ (1 − x/M)Mt , where M is the (large) number of
bonds in our lattice model.
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Then the hopping rates DA, DB , and the reaction rate c are
converted to the respective probabilities for hopping D̃A, D̃B ,
and reaction c̃. The probabilities are proportional to the rates:

(1)D̃A = ηDA, D̃B = ηDB, c̃ = ηc.

It follows that

D̃A

c̃
= DA

c
,

D̃B

c̃
= DB

c
,

(2)0 � D̃B � 1, 0 � D̃A + c̃ � 1.

The last condition in (2) is to ensure that at most a hopping
of an A-particle or a cracking reaction takes place when a bond
connected to an α–α or α–β intersection is chosen. For the case,
DA � DB , one can choose c̃ + D̃A = 1, so as to maximize the
efficiency of the algorithm. The constant of proportionality η in
Eq. (1) is given by

η = 1

DA + c
for DA � DB,

(3)η = DA

DB(DA + c)
for DA < DB.

To implement an event associated with the bond, next a random
number r between 0 and 1 is drawn from a uniform distribu-
tion. There exist four types of bonds: (1) bonds in a channel,
(2) bonds connected to β–β intersections, (3) bonds connected
to α–α or α–β intersections, and (4) bonds connected to the
reservoir (i.e., bond between a boundary site and its associated
reservoir site).

(1) If the bond is a channel bond a hopping direction is cho-
sen randomly with equal probability. Then hopping across
the bond by one particle is attempted. If a hop is allowed,
as discussed in Section 2, it is implemented with the cor-
responding probability. The hopping possibilities are tabu-
lated in Table 1.

(2) The procedure for implementing hops across bonds con-
nected to β–β intersections is the same as that for channel
bonds as the cracking reaction cannot take place on this
bond.

(3) If the chosen bond is connected to an α–α or α–β intersec-
tion, then
• if the intersection is occupied by an A-particle and 0 <

r < c̃, replace A by 2B at the intersection,
• otherwise treat it as a channel bond and follow the pro-

cedure as for a channel bond.
(4) If the chosen bond is connected to a reservoir site follow

the same procedure as for a channel bond and then
• if the bond is in an α-channel, fill the reservoir site with

an A-particle with probability ρA, irrespective of the oc-
cupation after the jump attempt,

• if the bond is in a β channel, delete the B-particle in the
reservoir site, if there is one.

If a B-particle has hopped to the reservoir site then the cur-
rent counter i(B) = i(B) + 1 is incremented.

If no event is possible on the chosen bond, choose another
bond randomly and repeat. The procedure is repeated M times,
Table 1
Hopping transitions and their probabilities

Configuration Transition Probability

0–A or A–0 0–A → A–0 or A–0 → 0–A c̃ < r < c̃ + D̃A

0–B or B–0 0–B → B–0 or B–0 → 0–B 0 < r < D̃B

B–2B or 2B–B B–2B → 2B–B or 2B–B → B–2B 0 < r < D̃B

2B–0 or 0–2B 2B–0 → B–B or 0–2B → B–B 0 < r < D̃B

B–B B–B → 2B–0 0 < r < D̃B/2
B–B B–B → 0–2B D̃B/2 < r < D̃B

Fig. 2. Model for one intersection with four channel segments. The end sites of
the channels are the reservoir sites. One lattice site between the intersection and
the reservoir site is shown.

called an MC update, where M is the number of bonds in the
lattice.

The procedure is carried out a large number of times T . After
T MC updates, a new initial condition is chosen and further T

MC updates are carried out. This procedure is carried out for E

number of initial conditions, so as to remove any dependence
on the initial conditions. The initial condition for the lattice
is set up by filling the reservoir sites of the α-channels with
A-particles according to ρA: a given reservoir site is filled by
an A-particle with probability ρA. E and T should be chosen
such that the current j (B) obtained is stationary. The current
j (B) is calculated at time T as

(4)j (B) = i(B)/(ηT E).

We have found T = 2000 MC steps to give good stationarity
of the current when averaged over an ensemble size of E =
2000. For the simulations we chose ran2 as the random number
generator [17]. The statistical errors are small and the error bars
are within the symbol size and not plotted. We refer to the rates
and not probabilities in the following and also set ρ = ρA since
ρB = 0.

3.2. Analytical results for one intersection

In this section we consider the situation of one intersection
connected to the reservoir through n channel segments with one
site per channel (see Fig. 2 for n = 4, in the nomenclature of
Fig. 1, N = 1, L = 1).

The cracking reaction A → 2B is assumed to take place in-
stantaneously when an A-particle reaches the intersection site,



R. Harish et al. / Journal of Catalysis 253 (2008) 191–199 195
which implies c = ∞. Consequently, the intersection site is
empty, occupied by either one B-particle or two B-particles,
while the external sites are empty, occupied by one A-particle,
one B-particle or two B-particles. The evolution of the proba-
bility P(x, t) of finding the system in a configuration x at time
t is governed by the master equation:

(5)∂tP (x, t) =
∑

y �=x

{
w(y → x)P (y, t) − w(x → y)P (x, t)

}
,

where w(y → x) are the transition rates for the system to
change its configuration from state y to state x per unit time.
The first sum of the r.h.s. of Eq. (5) represents the incoming
flux into state x while the second sum represents the outgoing
flux from state x. In the stationary state, the time derivative in
Eq. (5) vanishes and one obtains the balance equation

(6)
∑

y �=x

w(y → x)P ∗(y) =
∑

y �=x

w(x → y)P ∗(x),

where P ∗(x) is the stationary probability distribution. In the
steady state one can write down the balance equations in terms
of the correlation functions associated with the system.

In the REF system (Fig. 2), due to the symmetry of the prob-
lem, the three types of possible correlation functions are:

Ejkl = 〈A...A︸ ︷︷ ︸
j

B...B︸ ︷︷ ︸
k

C...C︸ ︷︷ ︸
l

〉,

Bjkl = 〈B0 A...A︸ ︷︷ ︸
j

B...B︸ ︷︷ ︸
k

C...C︸ ︷︷ ︸
l

〉,

(7)Cjkl = 〈C0 A...A︸ ︷︷ ︸
j

B...B︸ ︷︷ ︸
k

C...C︸ ︷︷ ︸
l

〉.

Here, C represents 2B particles on a site, Ejkl represents
configurations with j number of A-particles, k number of
B-particles, and l number of C-particles on the lattice with the
intersection site being empty. Bjkl and Cjkl are defined simi-
larly but with B0 and C0 as the occupation probability of the
intersection site (see Fig. 3). However, in the MTC system, one
has to distinguish between α- and β-channels.

In the following we set DA = 1 which fixes the time scale. In
the REF system, for the incoming contribution Ejkl correlator
is given by

jρ[Ej−1kl − Ejkl − Ej−1k+1 l − Ej−1kl+1]
+ DBk[Bjk−1 l − Bj+1k−1 l − Bjkl − Bjk−1 l+1

+ Cjk−1 l − Cj+1k−1 l − Cjkl − 2Cjk−1 l+1 + Ejk−1 l+1]
+ DBk(1 − ρ)Ejk−1 l+1 + DBlCjk+1 l−1

(8)+ 1

2
DBlBjk+1 l−1,

which has to be balanced in the steady state by the outgoing
contribution,

(9)(2 − ρ)
[
j + DB(k + l)

]
Ejkl − jBjkl − [DBl + j ]Cjkl.

One may write down similar equations for the Bjkl and Cjkl

correlators and the set of coupled linear equations can be
solved, for example using Maple. The current of B-particles
per channel segment is given by
Fig. 3. Correlation functions E201 = 〈AAC〉 and B200 = 〈B0AA〉.

Fig. 4. Current j per channel segment for the one intersection model with diffu-
sion rate DA = 1 and for diffusion rates DB = 1/2 (!), DB = 1 (1), DB = 2
(E), and DB = 8 (�). The dashed line j = ρ corresponds to the limiting case
DB → ∞.

(10)jB = 2〈V0A〉 = 2(E100 − B100 − C100),

where V0 stands for a vacancy at the intersection.
In Fig. 4 we have plotted the current j as a function of ρ for

different diffusion rates DB . One observes that as the B-particle
diffusion rate increases the maximum current shifts to the right.
The current is almost symmetric for DB = 2. As DB → ∞,
j → ρ which is shown as the dashed line. It is seen that for
moderate DB and for small values of ρ, the current is close to
the infinite diffusion rate line. In Table 2 we present a compari-
son of our MC simulation results obtained for a reaction rate of
c = 100 with the exact results of the infinite reaction rate case.
The MC data are given for the total B-particle current (which
is 4 times the current for the single segment since we have 4
channel segments in the REF system). Almost all deviations
from the analytical values are less than 1%.

In Fig. 5 we present the exact results obtained for the case
where an intersection is connected to the reservoir by two chan-
nel segments: in the REF system both the channel segments are
α-channel segments and for the MTC case, one is an α-channel
segment and the other is a β-channel segment. It is seen that
the current in the MTC system is less than that in the REF sys-
tem when the reservoir density ρ is small. As ρ is increased the
α-channels get increasingly blocked resulting in decreased cur-
rent eventually tending to zero in the REF case. On the other
hand, in the MTC system, this results in an increased motion
of A-particles toward the intersection and as the β-channels are
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Table 2
Comparison of MC and exact results of the total current for the single intersec-
tion for DA = DB = 1

ρ MC Exact % deviation

0.1 0.3191 0.3184 0.22
0.2 0.5135 0.5096 0.77
0.3 0.6089 0.6088 0.01
0.4 0.6381 0.6392 0.17
0.5 0.6157 0.6168 0.17
0.6 0.5520 0.5512 0.14
0.7 0.4477 0.4504 0.60
0.8 0.3230 0.3216 0.43
0.9 0.1685 0.1704 1.11

Fig. 5. Total B-particle current j for the one intersection case (two channel
segments) for DA = 1. DB = 1 REF (1), DB = 2 REF (2), DB = 1, MTC
(!), and DB = 2 MTC (").

Fig. 6. Maximum current j∗ for the one intersection (two channel segments)
case DA = 1, REF (1) and MTC (!) as a function of DB (a). The maximum
efficiency ratio as a function of DB (b).

available for the exit of B-particles, the current monotonically
increases. This is evident in Fig. 5. We also note that for the
values of DB considered, the maximum current with respect to
ρ is higher for MTC system than for the REF system, which
is clearly an MTC effect. We also note that the MTC effect is
observed at higher values of ρ as DB is increased.

In Fig. 6a we have plotted the maximum current j∗ (w.r.t.
ρ) for both REF and MTC systems. It can be seen that there is
always a MTC effect for all values of DB . In Fig. 6b, we have
plotted the maximal efficiency ratio

(11)R = j∗
MTC

j∗
REF

as a function of DB . It presents a maximum around DB = 2
and then decreases toward unity as the mobility of B-particles
Fig. 7. Current j for the REF system (1) and MTC (!) for a system of 5 × 5
(N = 5) channels for c = 0.05, DA = 0.5, and DB = 0.5. The current for both
REF and MTC systems decreases with L. Efficiency ratio R increases with L.

increases. One may notice that the behaviour obtained already
in the 2 channel segment case seems to be quite generic as seen
from the MC results presented in the next section.

3.3. Numerical results for large lattices

We wish to calculate the current of B-particles from the lat-
tice immersed in a reservoir of A-particles of density ρ. The
purpose is to study the current as a function of the hopping rates
DA, DB , and the reaction rate c in the BrS topology for lat-
tice sizes determined by N and L and compare it with the REF
system to evaluate the MTC effect in the BrS topology for the
cracking reaction.

3.3.1. DA = DB

First, we consider the case when the diffusion rates for the
reactant and product particles are the same. In Fig. 7 the out-
put current from the REF and MTC lattice are presented for a
network of 5 × 5 channels (N = 5) with the number of sites L

between intersections ranging from 1 to 3 for DA = DB = 0.5
and c = 0.05. As the A-particles start blocking the boundary
sites of the α-channels for increasing values of the reservoir
density ρ, the current tends to 0 as the density ρ approaches
unity for the REF system. On the other hand, the β-channels are
available for exit of B-particles in MTC case so that monotonic-
ity of current with ρ is observed. This is in accordance with the
one intersection case (cf. Fig. 5). The current for both REF and
MTC systems decreases substantially with length between in-
tersections L which is in qualitative agreement with the results
of [10,13]. For single file systems, it can be shown theoretically
that the current in the REF system is proportional to L−2 and
in the MTC system it is proportional to L−1 [10] in a channel.
Although the reaction–diffusion mechanism is somewhat dif-
ferent in our case (combination of exclusion and nonexclusion
dynamics due to different size of A- and B-particles), we find
qualitatively the same behaviour as in the isomerization case
where A- and B-particles are of similar size (modeled by full
exclusion for each species of molecules).

Generally, the currents decrease with increasing values of L.
The current drops by a factor of nearly three in the REF case
whereas in the MTC system the drop is by a factor of nearly two
as L is increased from L = 1 to L = 3. This is reflected very
clearly in terms of the efficiency ratio R defined in Eq. (11),
where we observe almost a 30% increase in the MTC system.
Numerical results for the isomerization reaction where both A-
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Fig. 8. Maximal current j∗ for REF (a) and MTC (b) for N = 3 (1), N = 5
(!), N = 7 (E), and N = 9 (�) for DA = DB = 0.5.

and B-particles are allowed in the α-channel (partial shape se-
lectivity) also exhibit monotonic behaviour of R with L [13],
although the MTC effect is less pronounced. Our size-selective
model shows similar quantitative behaviour [13]. For the iso-
merization with partial shape selectivity (L = 2), the efficiency
ratio is R = 1.19 [13], whereas in the present case, we have R =
1.22. The slight increase in the present case may be due to the
ability of the B-particles to pass each other in the β-channels.

Fig. 8 shows the maximal current j∗ for the REF system
for the reaction rate ranging from c = 0.001 to c = 1.0. The
maximal value of the current occurs in the REF case at some
value strictly between 0 and 1, see Fig. 7. It is obtained as the
maximum of a polynomial fit (up to degree 4) for j (ρ). For
both the systems the currents are plotted for N = 3,5,7,9 for
L = 1,2,3. In the REF system, Fig. 8a, for small values of c,
the current appears to increase logarithmically. For higher val-
ues of c, which implies complete cracking of A-particles into
two B-particles, the current approaches its maximum value. As
expected from theoretical considerations discussed above, the
maximal current decreases when L is increased. The maximal
current also increases linearly with N as the number of inter-
sections increases where the cracking reactions can take place.
This is in accordance with theoretical expectation

(12)jMTC ∝ N

L2

for the BrS topology [13].
For the MTC system, Fig. 8b, we observe a similar logarith-

mic increase in the maximal current with respect to c but over
a smaller range of lower values of c. The current approaches
the asymptotic value j∗(c) faster as compared to the REF sys-
tem. For L = 1, the range of c over which the MTC currents
are higher than the REF currents is small. The range increases
with N and toward lower values of c. For L = 2,3, the MTC
currents are higher than the REF currents almost over the entire
range of c for N � 5. This implies the existence of MTC effect
for larger ranges of c as N and L take larger values.
Fig. 9. Efficiency ratio R for L = 1,2,3 for system defined in Fig. 8 for N = 3
(1), N = 5 (!), N = 7 (E), and N = 9 (�).

Fig. 10. The maximal efficiency ratio Rmax for increasing values of L (a)
(N = 3 (1), N = 5 (!), N = 7 (E), and N = 9 (�)) and for increasing val-
ues of N (b) (L = 1 (1), L = 2 (!), and L = 3 (E)) for system parameters
defined in Fig. 8.

The efficiency ratio R (Eq. (11)) is plotted in Fig. 9 for the
same parameters as in Fig. 8. The tendency of the maximal cur-
rent to saturate faster with respect to c in the MTC system as
compared to the REF system is shown as a decrease in R as c is
increased. The efficiency ratio R rises above unity only over a
short range of c for N = 3,L = 1 (Fig. 9a). However, for larger
values of L, R is above unity over almost the entire range of c

for N � 5 (cf. Figs. 9b and 9c). We also note that R increases
with L and in our case, for N = 9, L = 3, R ≈ 1.68, indicat-
ing that the MTC lattice generates 68% more current than the
REF system. However, it should be noted that the absolute cur-
rent in both the systems decrease with L almost by factor 3 as is
seen from Fig. 8. The results nevertheless indicate a significant
MTC effect particularly for larger lattices and longer channels
between intersections, measured in terms of L. Although the
MTC effect is more noticeable for larger N and L, it seems to
saturate as N is increased. Further, Rmax(c) shifts toward some-
what lower values of c as both N and L are increased.

The maximal value of R, Rmax is shown in Fig. 10. Fig. 10a
shows Rmax for L = 1,2,3 and N = 3,5,7,9. Rmax exhibits
linearity. This is in agreement with the theoretical predic-
tion [13]

(13)RBrS ∝ L

for all values of N , as opposed to R ∼ L/N for the NBK
topology [11]. However, for any given L, although Rmax in-
creases, it shows a saturation tendency. This is emphasized well
in Fig. 10b, where the saturation of Rmax is clearly seen.

3.3.2. DA �= DB

We now turn our attention to the study of MTC effect by
varying DB . The diffusion rates of the molecules in the zeolite
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Fig. 11. Maximal currents for REF (a), MTC (b), and efficiency ratio R (c) as a
function of DB for N = 5 (1) and N = 9 (!) for DA = 0.5, c = 0.01.

depend on temperature, size of the molecule, pore size, loading,
etc. [16]. The dependence of diffusion rates of hydrocarbons
on the number of carbon atoms are also reported [18,19]. The
rates can decrease for larger molecules by orders of magnitude.
However, when the reactant molecules contain a small number
of carbon atoms, experimental evidence shows that the diffu-
sion coefficients of the cracked molecules are higher by some
numerical factor than those of the reactants [19]. Nevertheless it
is necessary to study the effect of DB on reactivity. We assume
the diffusion rates of the product particles to be of the same or-
der as that of the reactant particles. We also assume that the
diffusion rates of the product particles are higher than those of
the reactant particles due to their smaller size. This assumption
is justified although there are reports that the particle mobility
increases when its size approaches that of the pore size [20].

To test the role of DB in enhancement of reactivity, we
simulated the system for several values of DB . We have sim-
ulated the systems for N = 5 and N = 9 and L = 2 by keeping
DA = 0.5 throughout for c = 0.01. We have chosen this value
of c as the efficiency ratio decreases for values larger than this.
The results are shown in Fig. 11. As in the earlier results, cur-
rent for both REF and MTC systems increase with N . The
current in both the REF and MTC systems show an increase
with DB as expected from the mobility of B-particles. How-
ever, the efficiency ratio is found to decrease for DB > DA.

We can compare these results with the case of one inter-
section, Fig. 6. There, as DB is increased, an increase in R

is seen for low values of DB . But as DB is increased, there
is a monotonic decrease in R. For the case of N = 5,7 in
Fig. 11, we find a monotonic decrease in R as DB is increased.
However, both for one intersection and for larger lattices, R is
always above unity indicating the presence of the MTC effect.
But for larger lattices the maximum R is found in the region
DA ≈ DB . This may indicate that for the MTC system to be
most effective, the mobilities of both the reactant and product
particles should be nearly the same.

4. Conclusions

Our simulations show that there is a significant MTC ef-
fect for the cracking reaction in the BrS topology with size
selectivity. Rather than studying a specific reaction with given
numerical values for the diffusivities and reaction constants we
have performed a parametric study for an idealized cracking re-
action A → 2B with identical reaction products on a wide range
of reaction rates and diffusivities. It turns out that the strength
of the MTC effect depends on the ratios DA,B/c of the particle
diffusivities and reaction constant. We find both for the REF
and MTC systems that the output current of B-particles which
describes the molecular outflow of reaction products tends to
saturate as c is increased. However, the asymptotic value is
reached in MTC system for lower values of c than that in the
REF case. The effectiveness of MTC also seems to be more pro-
nounced when the reactant and product diffusivities are closer,
i.e., DA/DB ≈ 1.

The MTC effect also improves for larger lattices and larger
channel segments between intersections, but the efficiency ra-
tio saturates. The earlier analytical treatment of an isomeriza-
tion reaction A → B for similar pore topology [13] suggests
that this trend continues with increasing lattice size. Hence,
even though our simulations are performed on very small
lattices we may conclude that unlike as in the NBK topol-
ogy [11], the MTC effect in the BrS topology persists for large
commercially-sized grains.

In our treatment, the dynamics is a combination of both
exclusion and nonexclusion dynamics since reactants and prod-
ucts are assumed to be of different size. A comparison of obser-
vations between this study and a similar study for the isomer-
ization process on the same topology has been made [13]. In
the isomerization case reactants and products are considered to
be of equal size and full mutual exclusion was postulated. The
observations are qualitatively similar in both models, which im-
plies that the topology has a greater role than the particular
reaction or the dynamics under consideration.

We have attempted in this work to determine the effective-
ness of MTC over the REF system on a model two-dimensional
lattice network with a small number of channels. We have cho-
sen the simple BrS channel topology as it allows for fairly fast
simulation while still capturing the salient features of a poten-
tially successful MTC-topology. It is too early to judge how
strong precisely an MTC effect could be in real materials as it
may depend on various microscopic features of the interactions
among molecules inside a pore and with pore walls and also
on the precise dynamical details of the exchange with the gas
phase. As a next step it would be interesting to study the ef-
fectiveness of MTC for real three-dimensional channel topolo-
gies. An interesting candidate is the three-dimensional bimodal
structure of TNU-9 [14]. Simulation of this topology requires
much higher numerical effort, but appears to be feasible, and
will provide insight in the importance of the details of the chan-
nel topology.
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